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Die Arbeit bringt eine geometrische interpretation der expliziten Bewegungsgleichungen fur mechanische Systemr mii 
Zwangsbedingungen. Dies ,jiihrt zu einem geometrischen Prinzip der analytischen Mechanik. 

This paper provides a geometrical interpretation of the explicit equations of motion f o r  constrained mechanical systems. ThiJ 
leads to a geometric principle of analytical mechanics. 
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The geometry of constrained motion 

The principles of analytical mechanics given by D’ALEMBERT, LAGRANGE, and GAUSS are all-encompassing and therefore i t  
is natural that there cannot be a new fundamental principle for the theory of motion and equilibrium of discrete, dynarnical 
systems. However, additional perspectives are often useful if they can help provide deeper insights and/or help solve specific 
problems of special importance. It is in this vein that in this paper we provide a basic geometric interpretation of constrained 
motion which results in the statement of a geometric principle underlying analytical dynamics. 

Consider a set of n point-particles of masses m,, m,, . . . , m, whose positions are described in a Cartesian coordinate 
frame of reference by the 3n-vector x = [x,, x,, ..., x~,,]’. If the components of the external forces acting on the particles 
are given by the 3n-vector F = [ F , ,  F,, .. . , F J T ,  then the unconstrained equation of motion of the system can be written as 

( 1  1 

where the matrix M is a known 3n by 3n diagonal, positive definite matrix containing the masses of the n particles in sets 
of threes along the diagonal. Specifically, by “unconstrained” we mean that the number of degrees of freedom of the system 
equals the minimum number ofcoordinates needed to define the system’s configuration. The acceleration of the unconstrained 
system is therefore given, using equation ( l ) ,  by 

M i ( t )  = F(x,  i, t ) ,  

a = M - ’ F .  (2) 

Further, let this system be constrained by the m consistent, though not necessarily independent, constraints 

q i ( x , i , t ) = O ,  i =  1,2 ,..., m .  (3) 

These constraints include both holonomic and nonholonomic contraints. Assuming that the q ; s  are sufiiciently smooth, 
we can appropriately differentiate the equation set (3) with respect to time t ,  to give 

A ( x ,  i, t )  i = b ( ~ ,  i, t )  , (4) 

where A is an m by 3n matrix. Each holonomic constraint of the set (3) would need to be differentiated twice with respect 
to time while each nonholonomic constraint would need only one differentiation to put equation set (3) in the form of 
equation (4). 

Given a set of initial conditions x(to) and i ( t o )  which satisfy the constraint equations (3), the explicit equation of 
motion describing the time-evolution of the constrained system which we have described above can be written as (UDWADIA 
and KALABA [l]) 

f = a + M - ’ / Z C + e ,  ( 5 )  

where, the constraint matrix C is defined to be AM-’ / ’ ,  the vector e = b - Aa, and the superscript “+ ”  denotes the 
Moore-Penrose inverse of the matrix C. 

If the singular value decomposition of the matrix C is expressed as U A  VT, then the Moore-Penrose inverse of C is 
given by C+ = VA-’UT. This (unique) matrix C t  is such that C+CC+ = C+,  CC’C = C, (CC’)’ = CC’, and 

In order to geometrically interpret the motion of the constrained system, we begin by premultiplying equation (5) 

(6) 

Here f, and a, correspond to the scaled accelerations of the unconstrained and the constrained system, respectively, at time 1 .  

(C+C)’ = c+c. 

by M’l2.  Denoting the “scaled accelerations” M 1 / z f  and M’l’a by f, and a,, respectively, we rewrite equation ( 5 )  as 

f, = a, + C + e .  



p m  
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We begin by stating our main resul t :  
The motion of the constrained system ofparticles described above proceeds at each instant of rime in such a manner t 
(1) the orthogonal projection of the scaled acceleration of the constrained system on the column space of CT exc 

that of the scaled acceleration of the unconstrained system by C'e, where C is the constraint matrix and e is the extent. 
which the unconstrained acceleration a does not satisfy, at that instant of time, the constraint equation (4); and, 

(2) the orthogonal projections of the scaled accelerations of the constrained and the unconstrained system on the 0 

space of C are identical. 
We now present the following results which we will need in order to prove this geometrical feature of constraba 

motion. 

Result  1 :  The matrix P = C'C is an orthogonal projection on the space spanned by the columns of CT. We  n@j 
denote this space as 9 (CT) .  

P r o o f  Let the matrix A have rank r. Then the singular value decomposition of the rn by 3n matrix C whose r 
is also r,  is given by C = UAV', where the r by r diagonal matrix A contains the singular values of C. Hen 
P = C+C = V A - ' U T U A V T  = VVT, so that 

PT = P ,  and P2 = P .  I3 
We next show that the space spanned by the columns of P is identical to that spanned by the columns of CT. Thus I@ 
need to show that for any m-vector I ,  there exists a 3n-vector y such that 

P y  = C T I .  @ 

P P +  (CTI)  = CTI . (9 
A necessary and sufficient condition for the equation set (8) to be consistent is that 

Considering the left hand member of the above equation, we get 

PP+CT = C'C(C'C)+ CT = C+CC+CCT = C+CCT 

= (C+C)T CT = CT(C+)T CT = (CC+C)T = C T ,  

and hence (9) is proved. In view of (7) and (8) ,  the result now follows. 

Result  2: The matrix Q = [ I  - PI = [ I  - C'C] is an orlhogonalprojection onto rhe null space o f the  matrix C. We 
denote the null space of C by N ( C ) .  

P r o o f  Since P is symmetric, Q is symmetric. Also, QZ = I - 2P + P 2 ,  which by (7)  indicates that Q2 = Q. We 
next need to show that for any 3n-vector y, C(Qv) = 0. But we have, 

CQ = UAVT(I  - VVT) = (C - C )  = 0 ,  (11) 

and hence Q is an orthogonal projection onto the null space of C.  

Result 3: Any 3n-vector JJ can be expressed as the sum of its orthogonal projections on &(CT) and .N(C).  

P r o o f  The subspaces W(CT)  and N ( C )  are orthogonal complements of each other in the 3n-dimensional vector 
space R3". If the rank of the matrix A is r ,  then the dimensions of the subspaces W(CT)  and N ( C )  are r and 3n - 6. 
respectively. 

Now premultiplying equation (6) by P = C+C we get 

Px,  - Pa, = C+CC+e = C + e .  (121 

Noting Result 1, equation (12) proves the first part of our main result. We note that the right hand side of equation (1% 
can also be expressed as 

C'e = C'(b - Aa) = C + ( b  - Ca,) = C+b - P a , .  (19 
Thus equation (12) simplifies to 

PXs = C'b.  

The first part of our main result can then be restated as follows: The projection of the acceleration of the constrained syste@ 
of particles onto the subspace W(CT) is C'b. 

Equation (6) can also be written using (4) and our definitions o f f ,  and a, as 

i, - a, = C+ (Cx,  - Ca,) , 
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from which it follows that 

Q X ,  = Qa,, (16) 

&ere Q = I - P .  Noting Result 2, this proves the second part of our main result. 
Our geometrical interpretation of constrained motion lends itself to  the following pictorial representation. 

Fig. 1 .  The geometry of constrained motion. P = C'C and Q = I - f 

To understand this pictorial description better, we can write the equation of motion of the constrained system as 

f, = a, + M-'I2F',  (1 7) 

where the 3n-vector Fc is the force of constraint which is brought into play by the presence of the constraint which is 
described by equation (4). Noting our definition of is, equation (4) can in turn be expressed as 

Cf, = b .  (18) 

Let us denote the scaled force of constraint, M-lI2Fc ,  by FP. The principle of virtual work then requires that for any 
scaled virtual displacement vector v (i.e., for any vector v such that Cv = 0), the work done, at each instant of time, by the 
scaled constraint force FS must be zero. 

The subspace Jf(C), at each instant of time t ,  is simply the tangent plane in which all the scaled virtual displacement 
vectors reside. Since the scaled force of constraint, at each instant of time, cannot do any work on any scaled virtual 
displacement vector, there can be no component of the scaled force of constraint on M(C). But we see by equation (17) 
that any alteration in the scaled acceleration of the unconstrained motion because of the constraints, is solely engendered 
by virtue of the scaled force of constraint. Hence the component in M ( C )  of the scaled unconstrained acceleration and 
the scaled constrained acceleration must be identical at each instant of time. This constitutes the second part of our result. 
Though we have used more general constraints (of the form of equation set (3)) than usually used in analytical mechanics, 
this result was, in essence, known to LAGRANGE. 

The new feature introduced by the recently obtained explicit equation of motion (UDWADIA and KALABA [l]) given 
by equation (5) ,  is then the knowledge of the explicit magnitude of the component of the scaled constrained acceleration 
in the subspace 9(CT), i.e., in the subspace orthogonal to the null space of C. LAGRANGE knew that, at each instant of 
time, the effect of the constraint was to alter the component of the scaled acceleration in the subspace spanned by the 
columns of CT, but he did not provide the explicit magnitude of this component - he signified it as CTR, leaving us his 
legacy of the ubiquitous Lagrange multiplier I. 

This multiplier rn-vector can now be obtained by setting CTR = C'e, whose solution is simply 

R = (cc~)+ e + [I - (CC+)T]h, (19) 

where h is an arbitrary rn-vector. Noting that C = AM-''2,  we have CCT = A M - ' A T .  Using the singular value 
decomposition of C, the expression for the time dependent Lagrange multiplier m-vector 1 now becomes 

(20) 

where the second member on the right hand side obviously lies in the null space of CT. The Lagrange multiplier 1 is, in 
general, not unique. When the constraints described by the equation set (3) are linearly independent, the rank of the matrix A 
equals m, and then the second member on the right of equation (20) becomes zero; the Lagrange multiplier rn-vector in 
that case becomes unique. It should be noted that for the general situation, despite the nonuniqueness in the rn-vector I ,  
the equation of motion and the force of constraint remain unique because the second member on the right in equation (19) 
lies in the null space of CT. 

Since the vector h does not enter the equation of motion describing the constrained system, for the purposes of 
obtaining this equation we could just as well take h to be zero. The component of the vector I which lies in the range 
space of C, indicated by the first member on the right hand side of equation (20), is then what really matters as far as the 
determination of the equation of motion of the constrained system is concerned. As seen from equation (20), at each instant 

1 = (AM-'AT)+ e + [ I  - UUT] h ,  
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of time, this component is directly proportional to the vector e, the extent to which the acceleration of the unconstrain 
system does not satisfy the constraints. 

It is noteworthy that the matrix of proportionality, ( A M - ' A T ) + ,  is an rn by m symmetric matrix. Thej-th compon 
I j ,  of the vector A, is the scalar Lagrange multiplier corresponding to the j-th constraint equation in the constraint 
given by equation (4). Also, the extent to which this j-th constraint equation is dissatisfied because of the presence of 
constraints is simply the j-th component, e,, of the vector e. Then the symmetry of (AM- 'AT)+  implies the followin 
each instant of time, the influence on ilj solely due to the dissatisfactjon of the i-th constraint equation in the set (4) 
certain (small) amount, is the same as the influence on I ,  solely due to the dissatisfaction of the j-th constraint equa 
by that same amount. Thus, at every time t, ail, \ ae, = ail, \ aei for i, j = 1,2, ..., m. 

I t  is interesting that the geometry of constrained motion - an aspect of Nature that has evaded our grasp for 
long - is in fact so simple and elegant. The scaled acceleration vector of the constrained system when projected onto t 
appropriate subspaces gives rise to components which are, at each instant of time, remarkably simple to determine. Oq$j 
cannot help but marvel at the simplicity and elegance with which Nature seems to operate. 

ZAMM . Z. angew. Math. Mech. 75 (1995) 8 
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